Add like
Add dislike
Add to saved papers

Fermented jellyfish ( Rhopilema esculentum ) collagen enhances antioxidant activity and cartilage protection on surgically induced osteoarthritis in obese rats.

Collagen has been considered a key treatment option in preventing damage to the articular cartilage over time and supporting the healing process, following the onset of osteoarthritis (OA). This study aimed to investigate the effect of collagen fermented from jellyfish (FJC) by Bacillus subtilis natto on anterior cruciate ligament transection with medial meniscectomy (ACLT + MMx)-induced knee OA in high-fat diet (HFD)-induced obesity in rats. The male Sprague-Dawley rats were fed an HFD for 6 weeks before ACLT + MMx surgery, after which they were administered a daily oral gavage of saline (control, OA, and OBOA), either with FJC (20 mg/kg, 40 mg/kg, and 100 mg/kg body weight) or glucosamine sulfate as a positive control (GS; 200 mg/kg body weight) for 6 weeks. Treatment with FJC decreased the fat weight, triglyceride, and total cholesterol levels in obese rats. Additionally, FJC downregulated the expression of some proinflammatory cytokines, including tumor necrosis factor-α, cyclooxygenase-2, and nitric oxide; suppressed leptin and adiponectin expression; and attenuated cartilage degradation. It also decreased the activities of matrix metalloproteinase (MMP)-1 and MMP-3. These results demonstrated that FJC showed a protective effect on articular cartilage and also suppressed the degradation of cartilage in an animal OA model, suggesting its potential efficacy as a promising candidate for OA treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app