Add like
Add dislike
Add to saved papers

NIR-II Light Evokes DNA Cross-linking for Chemotherapy and Immunogenic Cell Death.

Acta Biomaterialia 2023 Februrary 14
As a DNA damaging agent, oxaliplatin (OXA) can induce immunogenic cell death (ICD) in tumors to activate the immune system. However, the DNA damage induced by OXA is extremely limited and the ICD effect is not strong enough to enhance anti-tumor efficacy. Here, we propose a strategy to maximize the ICD effect of OXA through the mild hyperthermia generated by nanoparticles with a platinum (IV) prodrug of OXA (Pt(IV)-C16) and a near-infrared-II (NIR-II) photothermal agent IR1061 upon the irradiation of NIR-II laser. The mild hyperthermia (43°C) holds advantages in two aspects: 1) increase the Pt-DNA cross-linking, leading to enhanced DNA damage and apoptosis; 2) induce stronger ICD effects for cancer immunotherapy. We demonstrated that, compared with OXA and photothermal therapy of IR1061 alone, these nanoparticles under NIR-II light irradiation can significantly improve the anti-cancer efficacy against triple-negative breast cancer 4T1 tumor. This new strategy provides an effective way to improve the therapeutic outcome of OXA. STATEMENT OF SIGNIFICANCE: : Oxaliplatin could induce immunogenic cell death (ICD) via stimulating immune responses by increasing tumor cell stress and death, which triggers tumor-specific immune responses to achieve immunotherapy. However, due to the insufficient Pt-DNA crosslinks, the ICD effect triggered by oxaliplatin cannot induce robust immune response. Mild hyperthermia has great potential to maximize the therapeutic outcome of oxaliplatin by the following effects: 1) increase the Pt-DNA cross-linking, leading to enhanced DNA damage and apoptosis; 2) induce stronger ICD effects for cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app