Read by QxMD icon Read

Acta Biomaterialia

Karen Peynshaert, Stefaan J Soenen, Bella B Manshian, Shareen H Doak, Kevin Braeckmans, Stefaan C De Smedt, Katrien Remaut
: In the last decade the interest in autophagy got an incredible boost and the phenomenon quickly turned into an extensive research field. Interestingly, dysfunction of this cytoplasmic clearance system has been proposed to lie at the root of multiple diseases including cancer. We therefore consider it crucial from a toxicological point of view to investigate if nanomaterials that are developed for biomedical applications interfere with this cellular process. Here, we study the highly promising 'gradient alloyed' quantum dots (QDs) that differ from conventional ones by their gradient core composition which allows for better fluorescent properties...
October 17, 2016: Acta Biomaterialia
Daniel J Sobczynski, Omolola Eniola-Adefeso
Plasma proteins rapidly coat the surfaces of particulate drug carriers to form a protein corona upon their injection into the bloodstream. The high presence of immunoglobulins in the corona formed on poly(lactic-co-glycolic acid) (PLGA) vascular-targeted carrier (VTC) surfaces was recently shown to negatively impact their adhesion to activated endothelial cells (aECs) in vitro. Here, we characterized the influence of anticoagulants, or their absence, on the binding efficiency of VTCs of various materials via modulation of their protein corona...
October 17, 2016: Acta Biomaterialia
Abdul Jalil Rufaihah, Nurul Azizah Johari, Srirangam Ramanujam Vaibavi, Marian Plotkin, Do Thi Di Thien, Theodoros Kofidis, Dror Seliktar
Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor therapy is promising, the retention in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. VEGF and ANG-1 were incorporated in PF hydrogels and their in vitro characteristics were studied...
October 15, 2016: Acta Biomaterialia
Arne Biesiekierski, Jixing Lin, Yuncang Li, Dehai Ping, Yoko Yamabe-Mitarai, Cuie Wen
: In this paper, we present further work on the influence of minor additions of Ru to the Ti-20Nb alloy system, with a primary focus on mechanical properties of the as-cast material, along with microstructural response to elevated temperatures. Findings include high as-cast strengths and admissible strain values, up to 920MPa and 1.5% respectively, along with moduli down to approximately 65GPa in the as-cast state. Together with a significant increase in cell proliferation under MTS assay relative to controls, this indicates the chosen alloy system has significant promise for application in porous orthopaedic biomaterials, in particular those alloys with 0...
October 14, 2016: Acta Biomaterialia
Stefano C Meliga, Jacob W Coffey, Michael L Crichton, Christopher Flaim, Martin Veidt, Mark A F Kendall
: In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms(-1))...
October 13, 2016: Acta Biomaterialia
Aaron F Cipriano, Amy Sallee, Myla Tayoba, Mayra C Cortez, Alan Lin, Ren-Guo Guan, Zhan-Yong Zhao, Huinan Liu
: Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x = 0.15, 0.5, 1.0, 1.5 wt.%; designated as ZSr41A, B, C, and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro...
October 13, 2016: Acta Biomaterialia
Dimple Chouhan, Bijayshree Chakraborty, Samit K Nandi, Biman B Mandal
Bombyx mori silk fibroin (BMSF) as biopolymer has been extensively explored in wound healing applications. However, limited study is available on the potential of silk fibroin (SF) from non-mulberry (Antheraea assama and Philosamia ricini) silk variety. Herein, we have developed non-mulberry SF (NMSF) based electrospun mats functionalized with epidermal growth factor (EGF) and ciprofloxacin HCl as potential wound dressing. The NMSF based mats exhibited essential properties of wound dressing like biocompatibility, high water retention capacity (440%), water vapour transmission rate (∼2330 gm(-2)day(-1)), high elasticity (∼2...
October 13, 2016: Acta Biomaterialia
Rosemeyre A Cordeiro, Daniela Santo, Dina Farinha, Arménio Serra, Henrique Faneca, Jorge F J Coelho
: Cationic polymer-based vectors have been considered a promising strategy in gene therapy area due to their inherent ability to condense genetic material and successfully transfect cells. However, they usually exhibit high cytotoxicity. In this work, it is proposed the use of a tailor-made gene carrier based on a tri-block copolymer of poly[2-(dimethylamino)ethyl methacrylate] and poly(β-amino ester) (PDMAEMA-b-PβAE-b-PDMAEMA), the influence of the PβAE length being assessed. For this purpose, three different block copolymers were prepared varying the molecular weight of this segment...
October 12, 2016: Acta Biomaterialia
Hao Meng, Yuan Liu, Bruce P Lee
: Mussel adhesive moiety, catechol, has been utilized to design a wide variety of biomaterials. However, the biocompatibility and biological responses associated with the byproducts generated during the curing process of catechol has never been characterized. An in situ curable polymer model system, 4-armed polyethylene glycol polymer end-capped with dopamine (PEG-D4), was used to characterize the production of hydrogen peroxide (H2O2) during the oxidative crosslinking of catechol. Although PEG-D4 cured rapidly (under 30s), catechol continues to polymerize over several hours to form a more densely crosslinked network over time...
October 12, 2016: Acta Biomaterialia
Yang Hu, Weihua Dan, Shanbai Xiong, Yang Kang, Arvind Dhinakar, Jun Wu, Zhipeng Gu
: To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phenol hydroxyl (COH) and nitrogen atom (NCO) within collagen fibers of PADM...
October 12, 2016: Acta Biomaterialia
Luis M De Leon-Rodriguez, Yacine Hemar, Guang Mo, Alok K Mitra, Jillian Cornish, Margaret A Brimble
: We report the synthesis and characterization of multifunctional peptides comprised of a hydrogel forming β-sheet peptide segment and a matrix metalloproteinase 2 substrate containing a propargylglycinyl linker that is further derivatized with an RGD peptide sequence via "click" chemistry. In contrast to currently known systems, these multifunctional peptides formed gels that are stiffer than those formed by their respective precursors. All the peptides showed reversible thermoresponsive properties, which render them as suitable lead systems for a variety of possible biomedical applications...
October 12, 2016: Acta Biomaterialia
Jingjing Wu, Cui Tang, Chunhua Yin
In order to reduce toxicity and improve antitumor therapeutic effects of doxorubicin (DOX) and recombinant human interleukin-2 (rhIL-2), we developed a hydrophilic cationic polymer (N,N,N-trimethyl chitosan, TMC) based nanocomplexes (FTCD/rhIL-2) which could efficiently mediate systemic co-delivery of hydrophobic DOX and water-soluble rhIL-2 to achieve the purpose of combination therapy. DOX was covalently conjugated to TMC through cis-aconitic anhydride (CA) which endowed nanocomplexes a pH-sensitive release of DOX, while rhIL-2 was loaded through electrostatic adsorption without compromise of bioactivity...
October 10, 2016: Acta Biomaterialia
Christoph Meinert, Karsten Schrobback, Peter A Levett, Cameron Lutton, Robert L Sah, Travis J Klein
Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content...
October 8, 2016: Acta Biomaterialia
Virginia Brancato, Alessandro Garziano, Filomena Gioiella, Francesco Urciuolo, Giorgia Imparato, Valeria Panzetta, Sabato Fusco, Paolo A Netti
: We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins...
October 6, 2016: Acta Biomaterialia
T L Landsman, T Touchet, S M Hasan, C Smith, B Russell, J Rivera, D J Maitland, E Cosgriff-Hernandez
: Uncontrolled hemorrhage accounts for more than 30% of trauma deaths worldwide. Current hemostatic devices focus primarily on time to hemostasis, but prevention of bacterial infection is also critical for improving survival rates. In this study, we sought to improve on current devices used for hemorrhage control by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device...
October 6, 2016: Acta Biomaterialia
Yuanyuan Li, Chunhuan Jiang, Dawei Zhang, Ying Wang, Xiaoyan Ren, Kelong Ai, Xuesi Chen, Lehui Lu
: Near infrared light responsive nanoparticles can transfer the absorbed NIR optical energy into heat, offering a desirable platform for photoacoustic (PA) imaging guided photothermal therapy (PTT) of tumor. However, a key issue in exploiting this platform is to achieve optimal combination of PA imaging and PTT therapy in single nanoparticle. Here, we demonstrate that the biodegradable polydopamine nanoparticles (PDAs) are excellent PA imaging agent and highly efficient for PTT therapy, thus enabling the optimal combination of PA imaging and PTT therapy in single nanoparticle...
October 6, 2016: Acta Biomaterialia
Jun-Haeng Cho, A-Ru Kim, Sang-Heon Kim, Su-Jae Lee, Hoeil Chung, Moon-Young Yoon
: CD133 is known as biomarker for glioblastoma (GBM) and also serves as a marker for cancer stem cells (CSCs), which carry out tumorigenesis and resist conventional therapeutics. The presence of CD133-presenting CSC is a one of the factors in maintenance of the tumorigenic potential of GBM. Thus, CD133 is a potential target for accurate diagnosis of GBM, which could improve its poor prognosis for patients when CSCs are present. Herein we designed a small peptide-based imaging agent with stimulus-responsive properties...
October 6, 2016: Acta Biomaterialia
Seungil Kim, Yufei Chen, Emmanuel A Ho, Song Liu
To provide better protection for women against sexually transmitted infections, on-demand intravaginal drug delivery was attempted by synthesizing reversibly pH-sensitive polyether-polyurethane copolymers using poly(ethylene glycol) (PEG) and 1,4-bis(2-hydroxyethyl)piperazine (HEP). Chemical structure and thermo- characteristics of the synthesized polyurethanes were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), (1)H-nuclear magnetic resonance ((1)H-NMR), and melting point testing...
October 4, 2016: Acta Biomaterialia
Hesameddin Mahjoubi, Emily Buck, Praveena Manimunda, Reza Farivar, Richard Chromik, Monzur Murshed, Marta Cerruti
: Polyetheretherketone (PEEK) has excellent mechanical properties, biocompatibility, chemical resistance and radiolucency, making it suitable for use as orthopedic implants. However, its surface is hydrophobic and bioinert, and surface modification is required to improve its bioactivity. In this work, we showed that grafting phosphonate groups via diazonium chemistry enhances the bioactivity of PEEK. Decreased contact angle indicated reduced hydrophobicity as a result of the treatment and X-ray photoelectron spectroscopy (XPS) confirmed the attachment of phosphonate groups to the surface...
October 4, 2016: Acta Biomaterialia
Brecht Van Hooreweder, Yanni Apers, Karel Lietaert, Jean-Pierre Kruth
: This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness...
October 4, 2016: Acta Biomaterialia
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"