Add like
Add dislike
Add to saved papers

Adaptive optics LEO uplink pre-compensation with finite spatial modes.

Optics Letters 2023 Februrary 16
Adaptive optics pre-compensation of free-space optical communications uplink from ground to space is complicated by the "point ahead angle" due to spacecraft velocity and the finite speed of light, as well as anisoplanatism of the uplink beam and the wavefront beacon. This Letter explores how pre-compensation varies with the number of spatial modes applied and how it varies with a beacon at the point-ahead angle versus a downlink beacon. Using a w0  = 16 cm Gaussian beam propagating through a modified Hufnagel-Valley model as an example, we find pre-compensation performance plateaus beyond ∼100 applied modes regardless of integrated turbulence strength, and that a point ahead beacon provides a 1-4 dB gain in median received power and an order-of-magnitude reduction in scintillation over a downlink beacon at wavelengths typical of optical communications. Modeling tailored to specific scenarios should be conducted to determine whether implementing a resource-intensive point ahead beacon is the optimum path to meeting link requirements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app