Journal Article
Review
Add like
Add dislike
Add to saved papers

Prospective use of amniotic mesenchymal stem cell metabolite products for tissue regeneration.

Chronic disease can cause tissue and organ damage constituting the largest obstacle to therapy which, in turn, reduces patients' quality-adjusted life-year. Degenerative diseases such as osteoporosis, Alzheimer's disease, Parkinson's disease, and infectious conditions such as hepatitis, cause physical injury to organs. Moreover, damage resulting from chronic conditions such as diabetes can also culminate in the loss of organ function. In these cases, organ transplantation constitutes the therapy of choice, despite the associated problems of immunological rejection, potential disease transmission, and high morbidity rates. Tissue regeneration has the potential to heal or replace tissues and organs damaged by age, disease, or trauma, as well as to treat disabilities. Stem cell use represents an unprecedented strategy for these therapies. However, product availability and mass production remain challenges. A novel therapeutic alternative involving amniotic mesenchymal stem cell metabolite products (AMSC-MP) has been developed using metabolites from stem cells which contain cytokines and growth factors. Its potential role in regenerative therapy has recently been explored, enabling broad pharmacological applications including various gastrointestinal, lung, bladder and renal conditions, as well as the treatment of bone wounds, regeneration and skin aging due to its low immunogenicity and anti-inflammatory effects. The various kinds of growth factors present in AMSC-MP, namely bFGF, VEGF, TGF-β, EGF and KGF, have their respective functions and activities. Each growth factor is formed by different proteins resulting in molecules with various physicochemical properties and levels of stability. This knowledge will assist in the manufacture and application of AMSC-MP as a therapeutic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app