Add like
Add dislike
Add to saved papers

Multi-head self-attention mechanism enabled individualized hemoglobin prediction and treatment recommendation systems in anemia management for hemodialysis patients.

Heliyon 2023 Februrary
Anemia is a critical complication in hemodialysis patients, but the response to erythropoietin-stimulating agents (ESA) treatment varies from patient to patient and is not linear across different time points. The aim of this study was to develop deep learning algorithms for individualized anemia management. We retrospectively collected 36,677 data points from 623 hemodialysis patients, including clinical data, laboratory values, hemoglobin levels, and previous ESA doses. To reduce the computational complexity associated with recurrent neural networks (RNN) in processing time-series data, we developed neural networks based on multi-head self-attention mechanisms in an efficient and effective hemoglobin prediction model. Our proposed model achieved a more accurate hemoglobin prediction than the state-of-the-art RNN model, as shown by the smaller mean absolute error (MAE) of hemoglobin (0.451 vs. 0.593 g/dL, p = 0.014). In ESA (including darbepoetin and epoetin) dose recommendation, the simulation results by our model revealed a higher rate of achieved hemoglobin targets (physician prescription vs. model: 86.3 % vs. 92.7 %, p < 0.001), a lower rate of hemoglobin levels below 10 g/dL (13.7 % vs. 7.3 %, p < 0.001) and smaller change in hemoglobin levels (0.6 g/dL vs. 0.4 g/dL, p < 0.001) in all patients. Our model holds great potential for individualized anemia management as a computerized clinical decision support system for hemodialysis patients. Further external validation with other datasets and prospective clinical utility studies are warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app