Add like
Add dislike
Add to saved papers

ERα stimulation rapidly modulates excitatory synapse properties in female rat nucleus accumbens core.

Neuroendocrinology 2023 Februrary 7
INTRODUCTION: The nucleus accumbens core (NAcc) is a sexually differentiated brain region that is modulated by steroid hormones such as 17β-estradiol (estradiol), with consequential impacts on relevant motivated behaviors and disorders such as addiction, anxiety, and depression. NAcc estradiol levels naturally fluctuate, including during the estrous cycle in adult female rats, which is analogous to the menstrual cycle in adult humans. Across the estrous cycle, excitatory synapse properties of medium spiny neurons (MSNs) rapidly change, as indicated by analysis of miniature excitatory postsynaptic currents (mEPSCs). mEPSC frequency decreases during estrous cycle phases associated with high estradiol levels. This decrease in mEPSC frequency is mimicked by acute topical exposure to estradiol. The identity of the estrogen receptor (ER) underlying this estradiol action is unknown. Adult rat NAcc expresses three ERs, all extranuclear: membrane ERα, membrane ERβ, and GPER1.

METHODS: In this brief report, we take a first step towards addressing this challenge by testing whether activation of ERs via acute topical agonist application is sufficient for inducing changes in mEPSC properties recorded via whole-cell patch clamp.

RESULTS: An agonist of ERα induced large decreases in mEPSC frequency, while agonists of ERβ and GPER1 did not robustly modulate mEPSC properties.

CONCLUSIONS: These data provide evidence that activation of ERα is sufficient for inducing changes in mEPSC frequency, and a likely candidate underlying the estradiol-induced changes observed during the estrous cycle. Overall, these findings extend our understanding of the neuroendocrinology of the NAcc and implicate ERα as a primary target for future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app