Add like
Add dislike
Add to saved papers

SLAC microresonator RF (SMuRF) electronics: A tone-tracking readout system for superconducting microwave resonator arrays.

We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems, such as microwave superconducting quantum interference device multiplexers (μmux) or microwave kinetic inductance detectors. Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line. The SMuRF system provides the capability for reading out up to 3328 channels across a 4-8 GHz bandwidth. Notably, the SMuRF system is unique in its implementation of a closed-loop tone-tracking algorithm that minimizes RF power transmitted to the cold amplifier, substantially relaxing system linearity requirements and effective noise from intermodulation products. Here, we present a description of the hardware, firmware, and software systems of the SMuRF electronics, comparing achieved performance with science-driven design requirements. In particular, we focus on the case of large-channel-count, low-bandwidth applications, but the system has been easily reconfigured for high-bandwidth applications. The system described here has been successfully deployed in lab settings and field sites around the world and is baselined for use on upcoming large-scale observatories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app