Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cyb5r3-based mechanism and reversal of secondary failure to sulfonylurea in diabetes.

Sulfonylureas (SUs) are effective and affordable antidiabetic drugs. However, chronic use leads to secondary failure, limiting their utilization. Here, we identify cytochrome b5 reductase 3 (Cyb5r3) down-regulation as a mechanism of secondary SU failure and successfully reverse it. Chronic exposure to SU lowered Cyb5r3 abundance and reduced islet glucose utilization in mice in vivo and in ex vivo murine islets. Cyb5r3 β cell-specific knockout mice phenocopied SU failure. Cyb5r3 engaged in a glucose-dependent interaction that stabilizes glucokinase (Gck) to maintain glucose utilization. Hence, Gck activators can circumvent Cyb5r3-dependent SU failure. A Cyb5r3 activator rescued secondary SU failure in mice in vivo and restored insulin secretion in ex vivo human islets. We conclude that Cyb5r3 is a key factor in the secondary failure to SU and a potential target for its prevention, which might rehabilitate SU use in diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app