Add like
Add dislike
Add to saved papers

Muscle-Specific Contributions to Vertical Ground Reaction Force Profiles During Countermovement Jumps: Case Studies in College Basketball Players.

Kipp, K and Kim, H. Muscle-specific contributions to vertical ground reaction force profiles during countermovement jumps: case studies in college basketball players. J Strength Cond Res 37(7): 1523-1529, 2023-The purpose of this study was to determine muscle-specific contributions to various types of vertical ground reaction force (vGRF) profiles in collegiate basketball players. Players from a men's ( n = 5; height: 1.84 ± 0.14 m; mass: 92.8 ± 11.4 kg) and a women's ( n = 5; 1.71 ± 0.09 m; mass: 80.1 ± 17.6 kg) basketball team completed 3-5 countermovement jumps (CMJ) while motion capture and force plate data were recorded. Muscle-specific contributions to vGRF were calculated through vGRF decomposition analysis. Profiles of vGRF were analyzed based on the presence of unimodal or bimodal peaks during the CMJ. The results showed that the soleus (SOL), gastrocnemii (GAS), vastii (VAS), and gluteus maximus (GMX) muscles all contributed to upward vGRF generation throughout the entire CMJ duration. The contributions were greatest for the SOL (1.78 body weight [BW]), intermediate for the GAS (0.96 BW) and VAS (0.72 BW), and negligible for the GMX (0.11 BW). For unimodal vGRF profiles, SOL contributions coincided with peak vGRF, whereas VAS contributions were stable throughout most of the CMJ. For bimodal vGRF profiles, SOL and VAS contributions explained the presence of the first vGRF peak, whereas GAS and VAS contributions explained the second vGRF peak. Differences between vGRF profiles appear to be the result of distinct force contributions from the VAS muscle, which may have implications for the analysis of vGRF time series data during CMJ testing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app