Add like
Add dislike
Add to saved papers

Cysteine hydropersulfide reduces lipid peroxidation and protects against myocardial ischaemia-reperfusion injury - Are endogenous persulfides mediators of ischaemic preconditioning?

Redox Biology 2023 January 11
Earlier studies revealed the presence of cysteine persulfide (CysSSH) and related polysulfide species in various mammalian tissues. CysSSH has both antioxidant and oxidant properties, modulates redox-dependent signal transduction and has been shown to mitigate oxidative stress. However, its functional relevance in the setting of myocardial ischaemia-reperfusion injury (IRI) remains unknown. The present study was undertaken to (1) study the dynamics of production and consumption of persulfides under normoxic and hypoxic conditions in the heart, and (2) determine whether exogenous administration of the CysSSH donor, cysteine trisulfide (Cys-SSS-Cys) at the onset of reperfusion rescues functional impairment and myocardial damage by interfering with lipid peroxidation. Utilising a well-established ex vivo Langendorff murine model, we here demonstrate that endogenous tissue concentrations of CysSSH are upregulated when oxygen supply is compromised (global myocardial ischaemia) and rapidly restored to baseline levels upon reperfusion, suggestive of active regulation. In a separate set of experiments, exogenous administration of Cys-SSS-Cys for 10 min at the onset of reperfusion was found to decrease malondialdehyde (MDA) concentrations, formation of 4-hydroxynonenal (4-HNE) protein adducts and rescue the heart from injury. Cys-SSS-Cys also restored post-ischaemic cardiac function, improving both coronary flow and left ventricular developed pressure (LVDP). Taken together, these results support the notion that endogenous CysSSH plays an important role as a "redox preconditioning" agent to combat the oxidative insult in myocardial IRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app