Add like
Add dislike
Add to saved papers

Analysis of tumor-immune functional responses in a mathematical model of neoantigen cancer vaccines.

Mathematical Biosciences 2023 January 13
Cancer neoantigen vaccines have emerged as a promising approach to stimulating the immune system to fight cancer. We propose a simple model including key elements of cancer-immune interactions and conduct a phase plane analysis to understand the immunological mechanisms of cancer neoantigen vaccines. Analytical results are obtained for two widely used functional forms that represent the killing rate of tumor cells by immune cells: the law of mass action (LMA) and the dePillis-Radunskaya Law (LPR). Using the LMA, our results reveal that a slowly growing tumor can escape the immune surveillance and that there is a unique periodic solution. The LPR offers richer dynamics, in which tumor elimination and uncontrolled tumor growth are both present. We show that tumor elimination requires sufficient number of initial activated T cells in relationship to the malignant cells, which lends support to using the neoantigen cancer vaccine as an adjuvant therapy after the primary tumor is surgically removed or treated using radiotherapy. We also derive a sufficient condition for uncontrolled tumor growth under the assumption of the LPR. The juxtaposition of analyses with these two different choices for the killing rate function highlights their importance on model behavior and biological implications, by which we hope to spur further theoretical and experimental work to understand mechanisms underlying different functional forms for the killing rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app