Add like
Add dislike
Add to saved papers

Elevation of hsa-miR-7-5p level mediated by CtBP1-p300-AP1 complex targets ATXN1 to trigger NF-κB-dependent inflammation response.

Nuclear factor-κB (NF-κB)-mediated inflammation is a major cause of acute respiratory distress syndrome (ARDS). However, the regulatory mechanisms by which NF-κB transactivates proinflammatory cytokines remain unclear in the pathogenesis of ARDS. Herein, we report that the activating protein 1 (AP1) transcription factor recruits a histone acetyltransferase p300 and a transcriptional regulator C-terminal binding protein 1 (CtBP1) to assemble the CtBP1-p300-AP1 complex, which transactivates the expression of hsa-miR-7-5p in ARDS biopsies. Overexpressed hsa-miR-7-5p binds to the three prime untranslated regions (3'-UTRs) of ataxin 1 (ATXN1), suppressing its expression. Decreased ATXN1 expression relieves its repression of NF-κB, causing the induction of proinflammatory cytokine genes and triggering an inflammatory response. Depletion of CtBP1 or treatments with two CtBP1 inhibitors (NSC95397 and 4-methylthio-2-oxobutanoate (MTOB)) in human macrophages impairs the assembly of the CtBP2-p300-AP1 complex, resulting in decreased hsa-miR-7-5p levels, upregulation of ATXN1, and attenuation of proinflammatory cytokines. A similar regulatory mechanism was observed in lipopolysaccharide-treated mice. Our results reveal that increased hsa-miR-7-5p level mediated by the CtBP1-p300-AP1 complex targets ATXN1 to trigger an NF-κB-dependent inflammatory response. Interfering with this signaling pathway to block the inflammatory response may be a strategy for treating ARDS. KEY MESSAGES : The transcription factor AP1 recruits p300 and CtBP1 to form a transcriptional complex, which transactivates the expression of hsa-miR-7-5p in ARDS biopsies. Overexpressed hsa-miR-7-5p binds to the 3'-UTR of ATXN1, suppressing its expression. The decreased ATXN1 impaired its suppression of NF-κB, causing the induction of proinflammatory cytokine genes and triggering inflammation response. Disruption of the assembly of CtBP2-p300-AP1 complex upregulates ATXN1 and attenuates inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app