Add like
Add dislike
Add to saved papers

Inherited Heterogeneities Can Control Viscous Subduction Zone Deformation of Carbonates at Seismogenic Depths.

This work links mineral-scale deformation mechanisms with structural evolution during subduction, providing examples showing how grain-scale heterogeneities facilitated viscous creep in calcite at nominally seismogenic temperatures. Carbonates commonly enter subduction zones, either highly concentrated in irregularly distributed sediments or as more distributed precipitates in seafloor volcanics. We present shear zones, localized in calcite veins formed during shallow subduction of calcareous sediment and seafloor volcanics, with viscous shear strains of ≥5. Shear strain localized because secondary phases and chemical variations maintained fine grain sizes in calcite aggregates, activating relatively rapid grain size-sensitive and frictional-viscous creep at temperatures (260 ± 10°C), cooler than predicted from extrapolation of experimental data. Creep at increased strain rates may limit elastic strain accumulation during interseismic periods, reducing the likelihood of large megathrust earthquakes. As shown here for calcite, common inherited natural heterogeneities may induce weakening of viscous mechanisms in other rocks, or at larger scales in the lithosphere.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app