Add like
Add dislike
Add to saved papers

Predicting Antarctic Net Snow Accumulation at the Kilometer Scale and Its Impact on Observed Height Changes.

Sub-grid-scale processes occurring at or near the surface of an ice sheet have a potentially large impact on local and integrated net accumulation of snow via redistribution and sublimation. Given observational complexity, they are either ignored or parameterized over large-length scales. Here, we train random forest (RF) models to predict variability in net accumulation over the Antarctic Ice Sheet using atmospheric variables and topographic characteristics as predictors at 1 km resolution. Observations of net snow accumulation from both in situ and airborne radar data provide the input observable targets needed to train the RF models. We find that local net accumulation deviates by as much as 172% of the atmospheric model mean. The correlation in space between the predicted net accumulation variability and satellite-derived surface-height change indicates that surface processes operate differently through time, driven largely by the seasonal anomalies in snow accumulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app