Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exercise-related hemoconcentration and hemodilution in hydrated and dehydrated athletes: An observational study of the Hungarian canoeists.

Hemoconcentration during exercise is a well-known phenomenon, however, the extent to which dehydration is involved is unclear. In our study, the effect of dehydration on exercise-induced hemoconcentration was examined in 12 elite Hungarian kayak-canoe athletes. The changes of blood markers were examined during acute maximal workload in hydrated and dehydrated states. Dehydration was achieved by exercise, during a 120-minute extensive-aerobic preload. Our research is one of the first studies in which the changes in blood components were examined with a higher time resolution and a wider range of the measured parameters. Hydration status had no effect on the dynamics of hemoconcentration during both the hydrated (HS) and dehydrated (DHS) load, although lower maximal power output were measured after the 120-minute preload [HS Hemoglobin(Hgb)Max median 17.4 (q1 17.03; q3 17.9) g/dl vs. DHS HgbMax median 16.9 (q1 16.43; q3 17.6) g/dl (n.s); HS Hematocrit(Hct)Max 53.50 (q1 52.28; q3 54.8) % vs. DHS HctMax 51.90 (q1 50.35; q3 53.93) % (n.s)]. Thirty minutes after the maximal loading, complete hemodilution was confirmed in both exercises. Dehydration had no effect on hemoconcentration or hemodilution in the recovery period [HS HgbR30' 15.7 (q1 15.15; q3 16.05) g/dl (n.s.) vs. DHS HgbR30' 15.75 (q1 15.48; q3 16.13) g/dl (n.s.), HS HctR30' 48.15 (q1 46.5; q3 49.2) % vs. DHS HctR30' 48.25 (q1 47.48; q3 49.45) % (n.s.)], however, plasma osmolality did not follow a corresponding decrease in hemoglobin and hematocrit in the dehydrated group. Based on our data, metabolic products (glucose, lactate, sodium, potassium, chloride, bicarbonate ion, blood urea nitrogen) induced osmolality may not play a major role in the regulation of hemoconcentration and post-exercise hemodilution. From our results, we can conclude that hemoconcentration depends mainly on the intensity of the exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app