Add like
Add dislike
Add to saved papers

Enhancement of cytotoxic and antioxidant activities of Digenea simplex chloroform extract using the nanosuspension technique.

Digenea simplex (D. simplex), an Egyptian marine red macroalga, contains a diverse group of phytochemicals with unique bioactivities. At the same time, the synthesis of nanosuspension (NS) has received increasing interest to optimize the technological aspects of drugs. Thence, the main objective of this work was to use the chloroform extract (ChlE) of D. simplex to prepare its nanosuspension (ChlE-NS) formulation to increase its aqueous solubility, thereby improving its bioactivity. By using FTIR, GC/MS analysis, and phytochemical screening assays, the chemical profiling of ChlE was assessed. NS was prepared by the antisolvent precipitation technique using 1.5% w/v polyvinyl alcohol (PVA). A light microscope, FTIR, particle size distribution, polydispersity index (PDI), and zeta potential (ZP) measurements was used to characterize the prepared NS. Four cancer cell lines were used in the MTT experiment to investigate the anticancer potential of ChlE and ChlE-NS. An apoptotic mechanism was established using acridine orange/ethidium bromide (AO/EB) dual staining, DNA fragmentation, and increased caspase activity. ChlE and ChlE-NS were also evaluated as antioxidants using DPPH and ABTS free radical assays. The results showed that, when compared to ChlE, ChlE-NS had greater cytotoxic activity against the four cancer cell lines. However, results of antioxidant activity showed that ChlE-NS had an IC50 of 36.86 ± 0.09 and 63.5 ± 0.47%, while ChlE had values of 39.90 ± 0.08 and 86.5 ± 0.8% in DPPH and ABTS assays, respectively. Based on the results of this research, D. simplex ChlE-NS may be an effective strategy for enhancing ChlE's cytotoxic and antioxidant activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app