Add like
Add dislike
Add to saved papers

Dynamic Nuclear Polarization of Selectively 29 Si-Enriched Core@shell Silica Nanoparticles.

Analytical Chemistry 2022 December 14
29 Si silica nanoparticles (SiO2 NPs) are promising magnetic resonance imaging (MRI) probes that possess advantageous properties for in vivo applications, including suitable biocompatibility, tailorable properties, and high water dispersibility. Dynamic nuclear polarization (DNP) is used to enhance 29 Si MR signals via enhanced nuclear spin alignment; to date, there has been limited success employing DNP for SiO2 NPs due to the lack of endogenous electronic defects that are required for the process. To create opportunities for SiO2 -based 29 Si MRI probes, we synthesized variously featured SiO2 NPs with selective 29 Si isotope enrichment on homogeneous and core@shell structures (shell thickness: 10 nm, core size: 40 nm), and identified the critical factors for optimal DNP signal enhancement as well as the effective hyperpolarization depth when using an exogenous radical. Based on the synthetic design, this critical factor is the proportion of 29 Si in the shell layer regardless of core enrichment. Furthermore, the effective depth of hyperpolarization is less than 10 nm between the surface and core, which demonstrates an approximately 40% elongated diffusion length for the shell-enriched NPs compared to the natural abundance NPs. This improved regulation of surface properties facilitates the development of isotopically enriched SiO2 NPs as hyperpolarized contrast agents for in vivo MRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app