Add like
Add dislike
Add to saved papers

Development and evaluation of transdermal delivery system of tranylcypromine for the treatment of depression.

Tranylcypromine (logP = 1.34, MW = 133.19 g/mol) is a monoamine oxidase inhibitor used in treating major depressive disorder and is available only as oral tablets. Transdermal delivery of tranylcypromine minimizes hepatic and gastrointestinal side effects associated with oral dosing and prevents systemic side effects improving patient compliance. A two-day suspension-based transdermal delivery method was developed in this study, and the delivery of tranylcypromine across dermatomed porcine ear skin was evaluated. Different penetration enhancers were screened, namely, isopropyl myristate, oleyl alcohol, oleic acid, and a combination of oleic acid and oleyl alcohol. Isopropyl myristate was chosen as the penetration enhancer, and suspension-based transdermal patches were formulated with acrylate and polyisobutylene pressure-sensitive adhesives by the solvent evaporation method. The release liner and backing membrane were chosen, and the drying time for each patch was optimized. The optimized patches were characterized for their adhesive properties, drying time, peel test, shear strength, and uniformity in drug content. In vitro permeation studies were performed on dermatomed porcine ear skin using vertical static Franz diffusion cells, and the receptor samples were collected at predetermined time points for 48 h. The samples were analyzed in a validated UPLC method. Acrylate-based suspension patch delivered a significantly higher amount of drug (712 ± 21.46 μg/cm2 ) as compared to passive delivery from drug dissolved in propylene glycol (461.49 ± 75.55 μg/cm2 ), reaching the two-day therapeutic target. However, the PIB-based suspension patch delivered 559.25 ± 12.37 μg/cm2 of tranylcypromine across the skin but did not reach the required target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app