Add like
Add dislike
Add to saved papers

Extensive metabolic consequences of human glycosyltransferase gene knockouts in prostate cancer.

BACKGROUND: Naturally occurring germline gene deletions (KO) represent a unique setting to interrogate gene functions. Complete deletions and differential expression of the human glycosyltransferase UGT2B17 and UGT2B28 genes are linked to prostate cancer (PCa) risk and progression, leukaemia, autoimmune and other diseases.

METHODS: The systemic metabolic consequences of UGT deficiencies were examined using untargeted and targeted mass spectrometry-based metabolomics profiling of carefully matched, treatment-naive PCa cases.

RESULTS: Each UGT KO differentially affected over 5% of the 1545 measured metabolites, with divergent metabolic perturbations influencing the same pathways. Several of the perturbed metabolites are known to promote PCa growth, invasion and metastasis, including steroids, ceramides and kynurenine. In UGT2B17 KO, reduced levels of inactive steroid-glucuronides were compensated by sulfated derivatives that constitute circulating steroid reservoirs. UGT2B28 KO presented remarkably lower levels of oxylipins paralleled by reduced inflammatory mediators, but higher ceramides unveiled as substrates of the enzyme in PCa cells.

CONCLUSION: The distinctive and broad metabolic rewiring caused by UGT KO reinforces the need to examine their unique and divergent functions in PCa biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app