Add like
Add dislike
Add to saved papers

Expression patterns and biological function of BCL2L10 during mouse preimplantation development.

BCL2-like 10 (BCL2L10) is abundantly expressed in mammalian oocytes and plays a crucial role in the completion of oocyte meiosis. However, the expression patterns of BCL2L10 and its biological functions during preimplantation development have not been well characterized. Here, we investigated the spatiotemporal expressions of Bcl2l10 during mouse preimplantation development using RT-qPCR and immunofluorescence and its biological function using siRNA and morpholino injection into pronuclear embryos. Results from RT-qPCR showed that Bcl2l10 was highly expressed in the metaphase Ⅱ-stage oocytes and pronuclear-stage embryos, but expression markedly decreased from the two-cell stage onwards and was no longer detected at the four-cell stage and beyond. Immunofluorescence staining showed that BCL2L10 was detectable throughout preimplantation development and localized in the cytoplasm and nuclei. Knocking down Bcl2l10 resulted in a reduced blastocyst formation rate (P < 0.01) and decreased expression of OCT4, NANOG, and SOX17 (P < 0.05). We concluded that the role of BCL2L10 is strongly associated with developmental competence of preimplantation mouse embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app