Add like
Add dislike
Add to saved papers

Alkali halides as nucleophilic reagent sources for N-directed palladium-catalysed ortho -C-H halogenation of s -tetrazines and other heteroaromatics.

RSC Advances 2022 October 25
A general palladium-catalysed selective C-H halogenation reaction is reported, which was successfully achieved for a large variety of functionalized aromatic rings incorporating diverse N-directing groups. By using simple alkali halides of MX type as the nucleophilic reagent source (M = Li, Na, K, Cs and X = I, Br and Cl), and phenyliodanediacetate oxidant, clean C-H-iodination, bromination and chlorination reactions were performed. This general protocol of selective ortho -monohalogenation, which complements but contrasts with the classical methods using electrophilic reagents, is achievable in a short time (30 min) with microwave irradiation assistance. The reaction was extended to substrates bearing N-directing pyridine, pyrimidine, pyrazole, oxazoline, naphtho[1,2- d ]thiazole, and azobenzene groups. Notably, the topical and selectivity-challenging s -tetrazine, as a nitrogen-rich heteroaromatic, was successfully halogenated by this protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app