Add like
Add dislike
Add to saved papers

Hypoxia-Nitric Oxide Axis and the Associated Damage Molecular Pattern in Cutaneous Melanoma.

Hypoxia was intensively studied in cancer during the last few decades, being considered a characteristic of the tumor microenvironment. The aim of the study was to evaluate the capacity of tumor cells to adapt to the stress generated by limited oxygen tissue in cutaneous melanoma. We developed a case-control prospective study that included 52 patients with cutaneous melanoma and 35 healthy subjects. We focused on identifying and monitoring hypoxia, the dynamic of nitric oxide (NO) serum metabolites and posttranslational metabolic disorders induced by NO signaling according to the clinical, biological and tumoral characteristics of the melanoma patients. Our study showed high levels of hypoxia-inducible factor-1a (HIF-1a) and hypoxia-inducible factor-2a (HIF-2a) in the melanoma patients. Hypoxia-inducible factors (HIFs) control the capacity of tumor cells to adapt to low levels of oxygen. Hypoxia regulated the nitric oxide synthase (NOS) expression and activity. In the cutaneous melanoma patients, disorders in NO metabolism were detected. The serum levels of the NO metabolites were significantly higher in the melanoma patients. NO signaling influenced the tumor microenvironment by modulating tumoral proliferation and sustaining immune suppression. Maintaining NO homeostasis in the hypoxic tumoral microenvironment could be considered a future therapeutic target in cutaneous melanoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app