Add like
Add dislike
Add to saved papers

To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury.

The objective of this research is to investigate the mediating impact of salvianolic acid B (SalB) on SIRT1 signaling pathway and the mechanism by which it inhibits Nod-like receptor protein 3 (NLRP3), as well as to examine how SalB affects myocardial injury brought on by tumor lesions at the junction of the tube and the stomach. Through the establishment of the integration of a stomach tube tumor lesion rats combined with the experimental rat model, this study establishes the normal group, model group, and different SalB dose groups. For each group of cells, cell activity and cell apoptosis were determined and compared using colorimetry and enzyme-linked immunosorbent method about lactate dehydrogenase (LDH). Interleukin-1 beta levels are measured. DCFH-DA fluorescent probe was applied to identify intracellular "reactive oxygen species" (ROS). "Western blot" was used to determine NLRP3, caspase-1, and apoptosis-related spotted protein (ASC) in each group of cells. And SIRT1 signaling pathway related to SIRT1, phosphorylated AMP protein-activated kinase α (P-AMPK α ), AMP protein-activated kinase α (AMPK α ), and "peroxisome-proliferator-activated receptor γ coactivator 1 α (PGC-1 α ) protein expression" are used. According to the final findings, SalB mediated the SIRT1 signaling pathway and had a beneficial impact on the upregulation of SIRT1, P-AMPK/AMPK, and PGC-1 protein expressions. SalB positively affects the downregulation of NLRP3 inflammasome-related proteins. Caspase-1 and ASC protein expression suggesting that SalB may inhibit the activation of NLRP3 inflammasome induced by oxidative stress by activating SIRT1/AMPK/PGC-1 α signaling pathway. This plays an antimyocardial injury effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app