Add like
Add dislike
Add to saved papers

Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations.

OBJECTIVE: Realizing neurotechnologies that enable long-term neural recordings across multiple spatial-temporal scales during naturalistic behaviors requires new modeling and inference methods that can simultaneously address two challenges. First, the methods should aggregate information across all activity scales from multiple recording sources such as spiking and field potentials. Second, the methods should detect changes in the regimes of behavior and/or neural dynamics during naturalistic scenarios and long-term recordings. Prior regime detection methods are developed for a single scale of activity rather than multiscale activity, and prior multiscale methods have not considered regime switching and are for stationary cases.

APPROACH: Here, we address both challenges by developing a Switching Multiscale Dynamical System model and the associated filtering and smoothing methods. This model describes the encoding of an unobserved brain state in multiscale spike-field activity. It also allows for regime-switching dynamics using an unobserved regime state that dictates the dynamical and encoding parameters at every time-step. We also design the associated switching multiscale inference methods that estimate both the unobserved regime and brain states from simultaneous spike-field activity.

MAIN RESULTS: We validate the methods in both extensive numerical simulations and prefrontal spike-field data recorded in a monkey performing saccades for fluid rewards. We show that these methods can successfully combine the spiking and field potential observations to simultaneously track the regime and brain states accurately. Doing so, these methods lead to better state estimation compared with single-scale switching methods or stationary multiscale methods. Also, for single-scale linear Gaussian observations, the new switching smoother can better generalize to diverse system settings compared to prior switching smoothers.

SIGNIFICANCE: These modeling and inference methods effectively incorporate both regime-detection and multiscale observations. As such, they could facilitate investigation of latent switching neural population dynamics and improve future brain-machine interfaces by enabling inference in naturalistic scenarios where regime-dependent multiscale activity and behavior arise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app