Add like
Add dislike
Add to saved papers

LMI-based H ∞ boundary practical consensus control for nonlinear multi-agent systems with actuator saturation.

ISA Transactions 2022 September 28
This paper mainly addresses the practical consensus problem of nonlinear multi-agent systems modeled by reaction-diffusion equations subject to the bounded external disturbances. Different from the existing consensus control methods associated with spatiotemporal dynamics, the proposed H∞ Neumann boundary controller based on distributed measurement data can guarantee the optimal disturbance attenuation performance under the actuator saturation. Initially, a consensus spatiotemporal error model is constructed by introducing the Kronecker product and equivalent directed graph. Subsequently, a linear matrix inequalities (LMIs)-based sufficient condition is derived by combining the improved Lyapunov-based approach and H∞ norm. Then, an optimization problem is proposed by applying invariant set, such that the consensus errors can converge to a minimized bounded region in the presence of actuator saturation. Finally, comparison simulations on the synchronization of FitzHugh-Nagumo (FHN) model are given to demonstrate the effectiveness of proposed methodology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app