Add like
Add dislike
Add to saved papers

Development of Two Recombinase Polymerase Amplification EXO (RPA-EXO) and Lateral Flow Dipstick (RPA-LFD) Techniques for the Rapid Visual Detection of Aeromonas salmonicida.

Marine Biotechnology 2022 December
Aeromonas salmonicida is the pathogen underlying furunculosis, causing a septicemic infection that influences both salmonid and non-salmonid fish. Early diagnosis of these contagions is essential for disease surveillance and prevention, so a rapid and sensitive approach is needed. Herein, a recombinase polymerase amplification EXO (RPA-EXO) assay and RPA with a lateral flow dipstick (RPA-LFD) were produced for testing A. salmonicida. The RPA-EXO and RPA-LFD primer sets were devised based on the conserved fragment sequence of the vapA gene. Then, RPA-EXO and RPA-LFD reaction systems were established, and the reaction temperature and time were optimized. After optimization, the RPA-EXO method was capable of testing A. salmonicida within 10 min, and the RPA-LFD method could detect A. salmonicida in only 5 min. The RPA-EXO and RPA-LFD methods exhibited high specificity with no cross-reaction with other strains. To assess sensitivity, a partial vapA gene was cloned, and serial plasmid dilutions were created ranging from 1 × 106 to 1 × 10-1 copies/μL. The detection limit of RPA-EXO was 1 × 102 copies/μL, and the detection limit of RPA-LFD was 1 copy/μL. For spiked turbot tissue samples, the sensitivity detection of A. salmonicida was 1.2 × 101  CFU/mL and 1.2 CFU/mL by RPA-EXO and RPA-LFD, respectively. In comparative analyses of clinical samples, the diagnostic results of RPA-EXO and RPA-LFD were compared with those of the standard conventional PCR test and showed nearly 100% consistency. Therefore, our RPA-EXO and RPA-LFD assays exhibited excellent specificity and sensitivity, which provided two simple, fast and dependable methods to conduct large-scale field investigations of A. salmonicida in resource-limited settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app