Add like
Add dislike
Add to saved papers

Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: a computational study.

Acta Biomaterialia 2022 September 30
Cuttlebone, the endoskeleton of cuttlefish, offers an intriguing biological structural model for designing low-density cellular ceramics with high stiffness and damage tolerance. Cuttlebone is highly porous (porosity ∼93%) and lightweight (density less than 20% of seawater), constructed mainly by brittle aragonite (95 wt%), but capable of sustaining hydrostatic water pressures over 20 atmospheres and exhibits energy absorption capability under compression comparable to many metallic foams (∼4.4 kJ/kg). Here we computationally investigate how such a remarkable mechanical efficiency is enabled by the multiscale structure of cuttlebone. Using the common cuttlefish, Sepia Officinalis, as a model system, we first conducted high-resolution synchrotron micro-computed tomography (µ-CT) and quantified the cuttlebone's multiscale geometry, including the 3D asymmetric shape of individual walls, the wall assembly patterns, and the long-range structural gradient of walls across the entire cuttlebone (ca. 55 chambers). The acquired 3D structural information enables systematic finite-element simulations, which further reveal the multiscale mechanical design of cuttlebone: at the wall level, wall asymmetry provides optimized energy absorption while maintaining high structural stiffness; at the chamber level, variation of walls (number, pattern, and waviness amplitude) contributes to progressive damage; at the entire skeletal level, the gradient of chamber heights tailors the local mechanical anisotropy of the cuttlebone for reduced stress concentration. Our results provide integrated insights into understanding the cuttlebone's multiscale mechanical design and provide useful knowledge for the designs of lightweight cellular ceramics. STATEMENT OF SIGNIFICANCE: Cuttlebone has been demonstrated to be a biological ceramic cellular material with remarkable lightweight, high stiffness and energy absorption. However, our knowledge on how such mechanical properties are enabled by cuttlebone's multiscale structure is not complete. Here we combine systematic tomography-based 3D structural analysis and finite-element simulations to reveal how the hierarchical structure of cuttlebone at multiple length scales synergistically contribute to cuttlebone's impressive mechanical efficiency. These findings have important implications for designing biomimetic low-density cellular ceramic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app