Add like
Add dislike
Add to saved papers

Effects of copper accumulation on growth and development of Scopelophila cataractae grown in vitro.

Scopelophila cataractae was cultured in vitro for 16 weeks to assess the contrasting effects of Cu on growth and reproduction, as well as gametophore stage. To induce buds and gametophores of S. cataractae, ten treatments (tr 1 to tr 10) of culture media were prepared using a combination of mineral salts, sugar, vitamin B complex, CuSO4 , and exogenous hormones. Highest numbers of gametophores and buds were formed in media containing 500 µM CuSO4 in co-application with auxin and cytokinin, as shown in the modest Cu treatments (tr 6 and tr 7, 26 per cushion and 255 per 25 mm2 , respectively). A 5000 µM CuSO4 concentration inhibited development of protonema, possibly due to Cu toxicity, resulting in chloronema forming contorted filaments or short cells containing lipid bodies, and brood body diaspores but no gametophore or bud formation. In this study, S. cataractae Cu accumulation in tissue was substantial (up to 2843.1 mg kg-1 ; tr 6) with no or minimal adverse effects, reflecting its potential for phytoremediation of Cu in terrestrial and aquatic ecosystems. The highest atomic percentages of Cu and Zn were detected in the stem surfaces of gametophores treated with 500 µM CuSO4 (11% atomic Cu and 7% atomic Zn), which served as a primary heavy metal storage site, ultimately protecting cells from metal toxicity. The success of this in vitro study on S. cataractae should also aid ex situ conservation efforts for a variety of rare moss taxa in the wild.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app