Add like
Add dislike
Add to saved papers

Facile Entropy-Driven Segregation of Imprinted Polymer-Grafted Nanoparticle Brush Blends by Solvent Vapor Annealing Soft Lithography.

Polymer-grafted nanoparticles (PGNPs) have attracted extensive research interest due to their potential for enhancing mechanical and electrical properties of both bulk polymer composite materials, as well as thin polymer films incorporating these nanoparticles (NPs). In previous studies, we have shown that an entropic driving force serves to organize low-molecular-mass PGNPs in imprinted blend films of PGNPs with low-molecular-mass homopolymers. In this work, we developed a novel solvent vapor annealing soft lithography (SVA-SL) method to overcome the technical difficulties in processing the high-molecular-mass PGNP blends due to the intrinsically sluggish melt annealing kinetics found in the phase separation of these blend PGNP materials. In particular, we utilized SVA-SL to create nanopatterns in blends of PGNPs having relatively high-molecular-mass-grafted layers but with cores of NPs having greatly different sizes. The minimization of the entropic free energy in the present system corresponded to larger PGNPs partitioning almost exclusively into the "mesa" regions of the imprinted PGNP blend films, as quantified by the estimation of the partition coefficient, K p . The use of the SVA-SL processing method is important because it allows facile imprint patterning of PGNP materials and large-scale organization of the PGNPs even when the grafted chain lengths are long enough for the chains to be highly entangled, allowing enhanced thermo-mechanical property enhancements of the resulting films and a corresponding extended range of potential nanotech applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app