Add like
Add dislike
Add to saved papers

Lactose crystallization and Maillard reaction in simulated milk powder based on the change in water activity.

Journal of Food Science 2022 September 27
Maillard reaction (MR) and lactose crystallization (LC) are important reactions in the storage of milk powder. In this study, three models with different proteins based on skimmed milk powder were established to investigate the relationship between MR and LC at different water activities (aw ). Moisture sorption isotherm, glass transition temperature (Tg ), and glycation products were evaluated, and the protein structure and lactose crystallinity were determined. The results indicated that MR product content, browning, and LC subsequently enhanced with the increase in aw . The Tg value dropped lower than 0 at aw 0.43 in whey protein isolate-lactose (WP-Lac) model and at aw 0.54 in casein-whey protein isolate-lactose (CN-WP-Lac) model and casein-lactose (CN-Lac) model. The crystallinity of α-lactose monohydrate and anhydrous β-lactose in WP-Lac model was more significant than CN-WP-Lac and CN-Lac models (p < 0.05). The molecular band of whey protein gradually blurred in the Sodium dodecyl-sulfate polyacrylamide gel electrophoresis image, and the content of α-helix of WP-Lac model increased by 45.15% from aw 0.33 to 0.53 (p < 0.05), while that of CN-WP-Lac model increased by only 3.95% (p < 0.05). With the increase in aw , WP-Lac model formed more browning and crystallization products than CN-WP-Lac model, indicating that the presence of micelle macromolecules and the interaction between casein and whey proteins limited the browning and crystallization in CN-WP-Lac model. Practical Application Maillard reaction and lactose crystallization are important reactions in the storage of milk powder, and the result will provide theoretical guidance for the development of milk powder in the food industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app