Add like
Add dislike
Add to saved papers

Enhancement of astrocytic gap junctions Connexin43 coupling can improve long-term isoflurane anesthesia-mediated brain network abnormalities and cognitive impairment.

AIM: Astrocytes are connected by gap junctions Connexin43 (GJs-Cx43) forming an extensive intercellular network and maintain brain homeostasis. Perioperative neurocognitive disorder (PND) occurs frequently after anesthesia/surgery and worsens patient outcome, but the neural circuit mechanisms remain unclear. This study aimed to determine the effects of the GJs-Cx43-mediated astrocytic network on PND and ascertain the underlying neural circuit mechanism.

METHODS: Male C57BL/6 mice were treated with long-term isoflurane exposure to construct a mouse model of PND. We also exposed primary mouse astrocytes to long-term isoflurane exposure to simulate the conditions of in vivo cognitive dysfunction. Behavioral tests were performed using the Y-maze and fear conditioning (FC) tests. Manganese-enhanced magnetic resonance imaging (MEMRI) and resting-state functional magnetic resonance imaging (rs-fMRI) were used to investigate brain activity and functional connectivity. Western blot and flow cytometry analysis were used to assess protein expression.

RESULTS: Reconfiguring the astrocytic network by increasing GJs-Cx43 expression can modulate 22 subregions affected by PND in three ways: reversed activation, reversed inhibition, and intensified activation. The brain functional connectivity analysis further suggests that PND is a brain network disorder that includes sleep-wake rhythm-related brain regions, contextual and fear memory-related subregions, the hippocampal-amygdala circuit, the septo-hippocampal circuit, and the entorhinal-hippocampal circuit. Notably, remodeling the astrocytic network by upregulation of GJs-Cx43 can partially reverse the abnormalities in the above circuits. Pathophysiological degeneration in hippocampus is one of the primary hallmarks of PND pathology, and long-term isoflurane anesthesia contributes to oxidative stress and neuroinflammation in the hippocampus. However, promoting the formation of GJs-Cx43 ameliorated cognitive dysfunction induced by long-term isoflurane anesthesia through the attenuation of oxidative stress in hippocampus.

CONCLUSION: Enhancing GJs-Cx43 coupling can improve brain network abnormalities and cognitive impairment induced by long-term isoflurane anesthesia, its mechanisms might be associated with the regulation of oxidative stress and neuroinflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app