Add like
Add dislike
Add to saved papers

A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer.

Cancer Gene Therapy 2022 September 24
The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app