Add like
Add dislike
Add to saved papers

Anti-macrophage migration inhibitory factor (MIF) activity of ibudilast: A repurposing drug attenuates the pathophysiology of leptospirosis.

Microbial Pathogenesis 2022 September 21
To develop the macrophage migration inhibitory factor (MIF) directed therapeutic approach for the treatment of leptospirosis, we identified potential MIF inhibitors by screening 10 essential tautomerase inhibition classes of chemical compounds and 7 existing anti-inflammatory and anti-microbial drugs. Dopachrome tautomerase assay was performed to measure the anti-MIF activity of selected compounds. Among 17 chemical compounds, ibudilast, an anti-inflammatory agent showed the MIF tautomerase IC50 value at a very lower concentration (9.5 ± 5.6 μM) which is considered similar to the IC50 of standard MIF antagonist, ISO-1 (6.2 ± 3.8 μM) with non-significant cytotoxicity. The in vitro analysis of the therapeutic potential of MIF inhibitor revealed that ibudilast significantly reduced the leptospiral lipopolysaccharide (LPS) mediated expression of inflammatory mediators such as intercellular adhesion molecule (ICAM), p38 and p44/42 mitogen-activated protein kinase (MAPK), inflammatory cytokines, and decreased the reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm ) loss and cell death of LPS treated THP-1 cells. In vivo analysis demonstrated that the administration of anti-MIF Ibudilast significantly reduced the histopathological changes, downregulates the pro-inflammatory cytokines, and protects the leptospiral BALB/c model from lethality by increasing the survival rate from 25% to 66%. Finally, the biocompatibility of the evaluated anti-MIF compound was explored by cytotoxicity, hemocompatibility, and cell death assay. Ibudilast showed no significant cytotoxicity and hemolytic activity was noticed even at the higher concentration of ≤50μM and ≥250μM, when compared with the positive control, 0.1% Triton X-100; no significant cell death was observed at ≤50μM concentration of Ibudilast in THP-1 cells. From these lines of evidence, we propose that Ibudilast may be a great MIF targeting repurposing drug for reliable supportive treatment of severe leptospirosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app