Add like
Add dislike
Add to saved papers

Label-free based quantitative proteomics analysis to explore the molecular mechanism of gynecological cold coagulation and blood stasis syndrome.

Cold coagulation and blood stasis (CCBS) syndrome is one of the common traditional Chinese medicine (TCM) syndromes of gynecological diseases. However, the molecular mechanism of CCBS syndrome is still unclear. Thus, there is a need to reveal the occurrence and regulation mechanism of CCBS syndrome, in order to provide a theoretical basis for the treatment of CCBS syndrome in gynecological diseases. The plasma proteins in primary dysmenorrhea (PD) patients with CCBS syndrome, endometriosis (EMS) patients with CCBS syndrome, and healthy women were screened using Label-free quantitative proteomics. Based on the TCM theory of "same TCM syndrome in different diseases," the differentially expressed proteins (DEPs) identified in each group were subjected to intersection mapping to obtain common DEPs in CCBS syndrome. The DEPs of gynecological CCBS syndrome in the intersection part were again cross-mapped with the DEPs of gynecological CCBS syndrome obtained by the research group according to the TCM theory of "different TCM syndromes in same disease" theory in the early stage, so as to obtain the DEPs of gynecological CCBS syndrome that were shared by the two parts. The common DEPs were subjected to bioinformatics analysis, and were verified by enzyme-linked immunosorbent assay (ELISA). A total of 67 common DEPs were identified in CCBS syndrome, of which 33 DEPs were upregulated and 34 DEPs were downregulated. The functional classification of DEPs involved in metabolic process, energy production and conversion, immune system process, antioxidant activity, response to stimulus, and biological adhesion. The subcellular location mainly located in the cytoplasm, nucleus, and extracellular. Gene ontology (GO) enrichment analysis showed that the upregulated DEPs mainly concentrated in lipid transport, cell migration, and inflammatory reaction, and the downregulated DEPs mostly related to cell junction, metabolism, and energy response. Protein domain enrichment analysis and clustering analysis revealed that the DEPs mainly related to cell proliferation and differentiation, cell morphology, metabolism, and immunity. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis clustering analysis showed that the upregulated DEPs were involved in inflammation and oxidative damage, while the downregulated DEPs were involved in inflammation, cell adhesion, cell apoptosis, and metabolism. The results of ELISA showed significantly increased levels of Cell surface glycoprotein MUC18 (MCAM) and Apolipoprotein C1 (APOC1), and significantly decreased levels of Vasodilator-stimulated phosphoprotein (VASP), Fatty acid-binding protein 5 (FABP5), and Vinculin (VCL) in patients with CCBS syndrome compared with healthy women. We speculated that cold evil may affect the immune process, inflammatory response, metabolic process, energy production and conversion, oxidative damage, endothelial cell dysfunction, and other differential proteins expression to cause CCBS syndrome in gynecological diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app