Add like
Add dislike
Add to saved papers

Self-Powered Resilient Porous Sensors with Thermoelectric Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) and Carbon Nanotubes for Sensitive Temperature and Pressure Dual-Mode Sensing.

Portable and wearable dual-mode sensors that can simultaneously detect multiple stimuli are essential for emerging artificial intelligence applications, and most efforts are devoted to exploring pressure-sensing devices. It is still challenging to integrate temperature and pressure-sensing functions into one sensor without the requirement for complex decoupling processes. Herein, we develop a self-powered and multifunctional dual-mode sensor by dip-coating melamine sponge with both poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and carboxylated single-walled carbon nanotubes (CNTs). By integrating thermoelectric and conductive PEDOT:PSS/CNT components with the hydrophilic and resilient porous sponge, the resultant sensor is efficient in independently detecting temperature and pressure changes. The temperature and pressure stimuli can be independently converted to voltage and electrical resistance signals on the basis of the Seebeck and piezoresistive effects, respectively. The sensor exhibits a high Seebeck coefficient of 35.9 μV K-1 with a minimum temperature detection limit of 0.4 K and a pressure sensitivity of -3.35% kPa-1 with a minimum pressure detection limit of 4 Pa. Interestingly, the sensor can also be self-powered upon illumination. These multi-functionalities make the sensor a promising tool for applications in electronic skin, soft robots, solar energy conversion, and personal health monitoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app