Add like
Add dislike
Add to saved papers

Identifying Disease Signatures in the Spinocerebellar Ataxia Type 1 Mouse Cortex.

Cells 2022 August 25
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is known to lead to the progressive degeneration of specific neuronal populations, including cerebellar Purkinje cells (PCs), brainstem cranial nerve nuclei and inferior olive nuclei, and spinocerebellar tracts. The disease-causing protein ataxin-1 is fairly ubiquitously expressed throughout the brain and spinal cord, but most studies have primarily focused on the role of ataxin-1 in the cerebellum and brainstem. Therefore, the functions of ataxin-1 and the effects of SCA1 mutations in other brain regions including the cortex are not well-known. Here, we characterized pathology in the motor cortex of a SCA1 mouse model and performed RNA sequencing in this brain region to investigate the impact of mutant ataxin-1 towards transcriptomic alterations. We identified progressive cortical pathology and significant transcriptomic changes in the motor cortex of a SCA1 mouse model. We also identified progressive, region-specific, colocalization of p62 protein with mutant ataxin-1 aggregates in broad brain regions, but not the cerebellum or brainstem. A cross-regional comparison of the SCA1 cortical and cerebellar transcriptomic changes identified both common and unique gene expression changes between the two regions, including shared synaptic dysfunction and region-specific kinase regulation. These findings suggest that the cortex is progressively impacted via both shared and region-specific mechanisms in SCA1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app