Add like
Add dislike
Add to saved papers

A chiral microenvironment promotes retinal progenitor cell proliferation by activating the Akt and ERK pathways.

Biomaterials Science 2022 August 32
Retinal progenitor cell (RPC) transplantation has been proposed as a potential strategy for the treatment of retinal degeneration, which is a leading cause of vision loss. However, a major obstacle is the poor proliferation of RPCs. Accumulating evidence suggests that the chiral features of the extracellular microenvironment are closely related to cell proliferation. Inspired by this, L/D-phenylalanine-derived molecules (LP and DP) are employed to construct a biomimetic chiral microenvironment for enhancing RPC proliferation. LP and DP self-assemble into left-handed and right-handed helical fibrous networks, respectively. It is found that DP nanofibrous films show an excellent ability in promoting RPC proliferation via the activation of the Akt and extracellular signal-regulated kinase (ERK) pathways. In addition, both LP and DP nanofibrous films have the advantage of attenuating inflammation, and LP films can maintain the stem potential of RPCs. Thus, the promotion of RPC proliferation using a bioinspired chiral fibrous microenvironment is a promising strategy for RPC-based therapies for retinal degeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app