Add like
Add dislike
Add to saved papers

Glucosinolate Sulfatases-Sulfatase-Modifying Factors System Enables a Crucifer-Specialized Moth To Pre-detoxify Defensive Glucosinolate of the Host Plant.

Numerous herbivores orally secrete defense compounds to detoxify plant toxins. However, little is known about the role of orally secreted enzymes by a specialized pest, Plutella xylostella , in the detoxification of plant defense compounds. Three glucosinolate sulfatases (GSSs) or two sulfatase-modifying factors (SUMF1s) mutant strains were established on the basis of CRISPR/Cas9 technology to validate the existence of a species-specific GSSs-SUMF1s system. In comparison to the bioassay data from mutant strains of GSS1 / GSS2 or SUMF1a / SUMF1b , GSS3 had a minimal role because no significant change was found in GSS3 -/- under different feeding contexts. Antibody-based technologies were used to examine GSSs-related deficient strains, and the results showed that the GSS1 protein was primarily released through larval oral secretion. On the basis of high-performance liquid chromatography, we found that GSS1 was secreted to pre-desulfate the typical plant defensive glucosinolates known as 4-(methylsulfinyl)butyl glucosinolate (4MSOB-GL) to suppress the production of the toxic substance, which is referred to as pre-detoxification strategy. These findings highlighted that the GSSs-SUMF1s system is the key factor for counteradaptation of P. xylostella to cruciferous plants, which strengthens the concept that herbivores deploy pre-detoxification strategies to disrupt the plant chemical defenses to facilitate the colonization process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app