Add like
Add dislike
Add to saved papers

Protective effects of calcyclin-binding protein against pulmonary vascular remodeling in flow-associated pulmonary arterial hypertension.

Respiratory Research 2022 August 31
BACKGROUND: Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) is recognized as a cancer-like disease with a proliferative and pro-migratory phenotype in pulmonary artery smooth muscle cells (PASMCs). Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) has been implicated in the progression of various cancers; however, it has not been previously studied in the context of CHD-PAH. Here, we aimed to examine the function of CacyBP/SIP in CHD-PAH and explore its potential as a novel regulatory target for the disease.

METHODS: The expression of CacyBP/SIP in PASMCs was evaluated both in the pulmonary arterioles of patients with CHD-PAH and in high-flow-induced PAH rats. The effects of CacyBP/SIP on pulmonary vascular remodeling and PASMC phenotypic switch, proliferation, and migration were investigated. LY294002 (MedChemExpress, NJ, USA) was used to block the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway to explore changes in PASMC dysfunction induced by low CacyBP/SIP levels. Hemodynamics and pulmonary arterial remodeling were further explored in rats after short-interfering RNA-mediated decrease of CacyBP/SIP expression.

RESULTS: CacyBP/SIP expression was markedly reduced both in the remodeled pulmonary arterioles of patients with CHD-PAH and in high-flow-induced PAH rats. Low CacyBP/SIP expression promoted hPASMC phenotypic switch, proliferation, and migration via PI3K/AKT pathway activation. Our results indicated that CacyBP/SIP protected against pulmonary vascular remodeling through amelioration of hPASMC dysfunction in CHD-PAH. Moreover, after inhibition of CacyBP/SIP expression in vivo, we observed increased right ventricular hypertrophy index, poor hemodynamics, and severe vascular remodeling.

CONCLUSIONS: CacyBP/SIP regulates hPASMC dysfunction, and its increased expression may ameliorate progression of CHD-PAH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app