Add like
Add dislike
Add to saved papers

Exposure to airborne particulate matter induces renal tubular cell injury in vitro : the role of vitamin D signaling and renin-angiotensin system.

Heliyon 2022 August
Background: Exposure to air pollution can interfere with the vitamin D endocrine system. This study investigated the effects of airborne particulate matter (PM) on renal tubular cell injury in vitro and explored the underlying mechanisms.

Methods: HK-2 human renal proximal tubule cells were treated with PM with or without 1,25(OH)2 D3 analog, 19-Nor-1,25(OH)2 D2 (paricalcitol, 10 nM) for 48 h. The dose- and time-dependent cytotoxicity of PM with or without paricalcitol was determined via cell counting kit-8 assay. Cellular oxidative stress was assessed using commercially available enzyme-linked immunosorbent assay kits. The protein expression of vitamin D receptor (VDR), cytochrome P450(CYP)27B1, CYP24A1, renin, angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-kB (NF-kB), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 was determined.

Results: PM exposure decreased HK-2 cell viability in a dose- and time-dependent manner. The activities of superoxide dismutase and malondialdehyde in HK-2 cells increased significantly in the group exposed to PM. PM exposure decreased VDR and Nrf2, while increasing CYP27B1, renin, ACE, AT1, NF-kB, TNF-α, and IL-6. The expression of VDR, CYP27B1, renin, ACE, AT1, and TNF-α was reversed by paricalcitol treatment. Paricalcitol also restored the cell viability of PM-exposed HK-2 cells.

Conclusion: Our findings indicate that exposure to PM induces renal proximal tubular cell injury, concomitant with alteration of vitamin D endocrine system and renin angiotensin system. Vitamin D could attenuate renal tubular cell damage following PM exposure by suppressing the renin-angiotensin system and by partially inhibiting the inflammatory response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app