Add like
Add dislike
Add to saved papers

How Strong Can We Pull? Critical Thresholds for Traction Forces on the Aortic Annulus: Measurements on Fresh Porcine Hearts.

Medicina 2022 August 5
Background and Objectives: Friable or infected tissue remains a challenge in surgical aortic valve replacement. We recently described the "Caput medusae" method, in which circumferential tourniquets temporarily secure the prosthesis and are then gently knotted. Tourniquets have been shown to develop significantly less force than knots. The current study investigates the critical threshold forces for tissue damage to the aortic annulus. Materials and Methods: In 14 fresh porcine hearts, the aortic valve leaflets were removed and several pledgeted sutures were placed along the annulus at defined locations. The hearts were mounted in a self-constructed device. Incremental traction force was applied to every suture and continuously recorded. The movement of each Teflon pledget was filmed with a high-speed camera. Forces at the moment of pledget "cut-in" as well as complete "tear-out" were determined from the recordings. Results: The average threshold force was determined 9.31 ± 6.04 N for cut-in and 20.41 ± 10.02 N for tear-out. Detailed analysis showed that the right coronary region had lower threshold forces than the other regions (4.77 ± 3.28 N (range, 1.67-12.75 N) vs. 10.67 ± 6.04 N (1.62-26.00 N) for cut-in and 10.67 ± 4.04 N (5.40-18.64 N) vs. 23.33 ± 9.42 N (9.22-51.23 N) for tear-out). The findings are discussed in conjunction with the knot and tourniquet forces from our previous study. Conclusions: Even in healthy tissue, moderate forces can reach a critical level at which a Teflon pledget will cut into the annulus, while a complete tear-out is unlikely. The right coronary portion is more susceptible to damage than the remaining regions. When compared to previous data, forces during manual knotting may exceed the critical cut-in level, while rubber tourniquets may provide a higher safety margin against tissue rupture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app