Add like
Add dislike
Add to saved papers

Kruppel Like Factor 5 Enhances High Glucose-Induced Renal Tubular Epithelial Cell Transdifferentiation in Diabetic Nephropathy.

Background - Diabetic nephropathy (DN) is a principal reason for kidney disease worldwide. High glucose (HG) is a major factor for DN. Kruppel like factor 5 (KLF5) participates in DN development. In the present study, we aim to elaborate the role of KLF5 in HG-induced renal tubular epithelial cell (RTEC) transdifferentiation in DN. Methods - RTECs (HK-2 cells) were treated with HG and were transfected with si-KLF5 or oe-HMGB1. Afterwards, expression of KLF5 and HMGB1 was detected, HK cell viability was determined, and levels of alpha-smooth muscle actin (α-SMA), E-cadherin, vimentin, and transforming growth factor beta 1 (TGF-β1) were assessed. Additionally, the binding relation between KLF5 and HMGB1 was analyzed. Results - In HK-2 cells with HG treatment, expression of KLF5 and HMGB1 was upregulated; levels of α-SMA, vimentin, and TGF-β1 were increased; and E-cadherin level was decreased. Moreover, KLF5 silencing resulted in down-regulated levels of α-SMA, vimentin, and TGF-β1 but upregulated level of E-cadherin. On the other hand, KLF5 could bind to the HMGB1 promoter and activate HMGB1 transcription. HMGB1 overexpression partially counteracted the inhibitive effect of KLF5 silencing on HG-induced HK-2 transdifferentiation. Conclusion - HG induced overexpressed KLF5 in RTECs, and as a transcription factor, KLF5 could bind to the HMGB1 promoter, thereby promoting HMGB1 transcription and RTEC transdifferentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app