Add like
Add dislike
Add to saved papers

Hypothalamic Overexpression of Makorin Ring Finger Protein 3 Results in Delayed Puberty in Female Mice.

Endocrinology 2022 August 18
Makorin Ring Finger Protein 3 (MKRN3) is an important neuroendocrine player in the control of pubertal timing and upstream inhibitor of GnRH secretion. In mice, expression of Mkrn3 in the hypothalamic arcuate and anteroventral periventricular nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if the persistence of hypothalamic Mkrn3 expression peripubertally would result in delayed puberty. Female mice that received neonatal bilateral intracerebroventricular injections of a recombinant adeno-associated virus expressing Mkrn3 had delayed vaginal opening and first estrus, compared to animals injected with control virus. Subsequent estrous cycles and fertility were normal. Interestingly, male mice treated similarly did not exhibit delayed puberty onset. Kiss1, Tac2, and Pdyn mRNA levels were increased in the mediobasal hypothalamus in females at postnatal day 28, whereas kisspeptin and neurokinin B protein levels in the arcuate nucleus were decreased, following Mkrn3 overexpression, compared to controls. Cumulatively, these data suggest that Mkrn3 may directly or indirectly target neuropeptides of Kiss1 neurons to degradation pathways. This mouse model suggests that MKRN3 may be a potential contributor to delayed onset of puberty, in addition to its well-established roles in central precocious puberty and the timing of menarche.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app