Add like
Add dislike
Add to saved papers

Direct Exciton Harvesting from a Bound Triplet Pair.

Advanced Materials 2022 August 17
Singlet fission is commonly defined as the generation of two triplet excitons from a single absorbed photon. However, ambiguities within this definition arise due to the complexity of the various double triplet states that exist in SF chromophores and the corresponding interconversion processes. To clarify this process, singlet fission is frequently depicted as sequential two-step conversion in which a singlet exciton decays into a bound triplet-pair biexciton state that dissociates into two "free" triplet excitons. However, this model discounts the potential for direct harvesting from the coupled biexciton state. Here, it is demonstrated that individual triplet excitons can be extracted directly from a bound triplet pair. It is demonstrated that due to the requirement for geminate triplet-triplet annihilation in intramolecular singlet fission compounds, unique spectral and kinetic signatures can be used to quantify triplet-pair harvesting yields. An internal quantum efficiency for triplet exciton transfer from the triplet pair of >50%, limited only by the solubility of the compounds is achieved. The harvesting process is not dependent on the net multiplicity of the triplet-pair state, suggesting that an explicit, independent dissociation step is not a requirement for using triplet pairs to do chemical or electrical work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app