Add like
Add dislike
Add to saved papers

"Nano Killers" Activation by permonosulfate enables efficient anaerobic microorganisms disinfection.

The development of effective nanomaterials for killing anaerobic bacteria is essential for human health and economic development. Here, we propose a new bactericidal mechanism where theoretical calculations are in good agreement with experimental results. The "poison arrow-head" of MoS2 nanosheets enables the vigorous extraction of lipids from the cell membrane. Based on density functional calculations, oxidation active species (OAS) are generated due to the strong adsorption energy between S vacancies in MoS2 and chemical substrates (permonosulfate (PMS) and H2 O). These OAS can be visualized as numerous moving "nano killers", constantly oxidizing the lipids around MoS2 ; thereby, re-releasing the surface of the sharp knife. The process of physical extraction collaborated with chemical oxidation not only precisely positions the cell membrane but also allows for continuous sterilization. This work digs into the mechanism of anaerobic bacterial sterilization, which sheds significant light on biological analysis, antibacterial, cancer therapy, and anti microbiologically influenced corrosion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app