Add like
Add dislike
Add to saved papers

Complete Reductive Dechlorination of 4-Hydroxy-chlorothalonil by Dehalogenimonas Populations.

Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile, TePN) is one of the most widely used fungicides all over the world. Its major environmental transformation product 4-hydroxy-chlorothalonil (4-hydroxy-2,5,6-trichloroisophthalonitrile, 4-OH-TPN) is more persistent, mobile, and toxic and is frequently detected at a higher concentration in various habitats compared to its parent compound TePN. Further microbial transformation of 4-OH-TPN has never been reported. In this study, we demonstrated that 4-OH-TPN underwent complete microbial reductive dehalogenation to 4-hydroxy-isophthalonitrile via 4-hydroxy-dichloroisophthalonitrile and 4-hydroxy-monochloroisophthalonitrile. 16S rRNA gene amplicon sequencing demonstrated that Dehalogenimonas species was enriched from 6% to 17-22% after reductive dechlorination of 77.24 μmol of 4-OH-TPN. Meanwhile, Dehalogenimonas copies increased by one order of magnitude and obtained a yield of 1.78 ± 1.47 × 108 cells per μmol Cl- released ( N = 6), indicating that 4-OH-TPN served as the terminal electron acceptor for organohalide respiration of Dehalogenimonas species. A draft genome of Dehalogenimonas species was assembled through metagenomic sequencing, which harbors 30 putative reductive dehalogenase genes. Syntrophobacter , Acetobacterium , and Methanosarcina spp. were found to be the major non-dechlorinating populations in the microbial community, who might play important roles in the reductive dechlorination of 4-OH-TPN by the Dehalogenimonas species. This study first reports that Dehalogenimonas sp. can also respire on the seemingly dead-end product of TePN, paving the way to complete biotransformation of the widely present TePN and broadening the substrate spectrum of Dehalogenimonas sp. to polychlorinated hydroxy-benzonitrile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app