Add like
Add dislike
Add to saved papers

Unlocking Molecular Secrets in a Monomer-Assembly-Promoted Zn-Metalated Catalytic Porous Organic Polymer for Light-Responsive CO 2 Insertion.

Anthropogenic carbon dioxide (CO2 ) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO2 concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO2 to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO2 and prevent global warming caused by it. In this work, we have introduced a novel monomer-assembly-directed strategy to design va isible-light-responsive conjugated Zn-metalated porous organic polymer ( Zn@MA-POP ) with a dynamic covalent acyl hydrazone linkage, via a one-pot condensation between the self-assembled monomer 1,3,5-benzenetricarbohydrazide ( TPH ) and a Zn complex ( Zn@COM ). We have successfully explored as-synthesized Zn@MA-POP as a potential photocatalyst in visible-light-driven CO2 photofixation with styrene epoxide ( SE ) to styrene carbonate ( SC ). Nearly 90% desired product ( SC ) selectivity has been achieved with our Zn@MA-POP , which is significantly better than that for the conventional Zn@TiO2 (∼29%) and Zn@gC3 N4 (∼26%) photocatalytic systems. The excellent light-harvesting nature with longer lifetime minimizes the radiative recombination rate of photoexcited electrons as a result of extended π-conjugation in Zn@MA-POP and increased CO2 uptake, eventually boosting the photocatalytic activity. Local structural results from a first-shell EXAFS analysis reveals the existence of a Zn(N2 O4 ) core structure in Zn@MA-POP , which plays a pivotal role in activating the epoxide ring as well as capturing the CO2 molecules. An in-depth study of the POP-CO2 interaction via a density functional theory (DFT) analysis reveals two feasible interactions, Zn@MA-POP-CO 2 -A and Zn@MA-POP-CO 2 -B , of which the latter has a lower relative energy of 0.90 kcal/mol in comparison to the former. A density of states (DOS) calculation demonstrates the lowering of the LUMO energy (EL) of Zn@MA-POP by 0.35 and 0.42 eV, respectively, for the two feasible interactions, in comparison to Zn@COM . Moreover, the potential energy profile also unveils the spontaneous and exergonic photoconversion pathways for the SE to SC conversion. Our contribution is expected to spur further interest in the precise design of visible-light-active conjugated porous organic polymers for CO2 photofixation to value-added chemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app