Add like
Add dislike
Add to saved papers

Environmental photochemistry with thiol- and silica-modified plasmonic nanocomposites: SERS sensing of municipal solid waste and tannery waste leachate from groundwater.

Mismanagement of obsolete solid waste generates a massive deteriorating effect on the environment. There is a high level of open trash disposal contaminating its neighboring water bodies. This despoliation trash causes an endangerment to the living environment. The waste management act is to hinder harmful effects on human beings, animals, plants, and their natural environment through the principles of waste prevention, waste processing, and waste disposal. Surface-enhanced Raman scattering (SERS) enhances the hazardous chemical sensing of environmental pollutants. To vigorously focus on the leaching of a couple of landfills in groundwater and surface water, an unusual combination of SERS-based poly vinyl thiol and silica-modified silver nanocomposites (PVT/SiO2@Ag NCs) was synthesized. The optical, crystalline, and structural properties of PVT/SiO2 @Ag NCs were described with UV-visible spectroscopy (UV-Vis), X-ray diffractometer (XRD), transmission electron microscope (TEM), and energy-dispersive X-ray analysis (EDX). The surface plasmon resonance (SPR) is detected at 403 nm from the PVT/SiO2 @Ag NPs. The average crystallite size of PVT/SiO2 @ Ag NCs is estimated using the Scherrer formula as 11 nm. The calculated specific surface area (SSA), strains, and dislocation densities demonstrate the improved mechanical properties of the substrate. The well-separated spherical shape of NPs is also observed, and the composition of silica and sulfur element in addition of Ag was confirmed by EDAX. Negatively charged SiO2 were bound strongly with the SH group and Ag NPs through electrostatic interaction mechanism as S-Ag-O-Si-O-Ag-S. SERS sensitivity is demonstrated by the prepared nanoparticles using an environmentally ignored leachate of municipal solid waste (MSW) and tannery waste (TW) landfill. PVT/SiO2 @Ag NCs has detected the presence of innards of MSW leachate viz., aromatic hydrocarbon, phenols, phthalates, and pesticide from the groundwater. Furthermore, the TW leachate compositions of benzenes, hydrocarbons, amines, and chromium VI were analytically identified. Also, the leaching of TW leachate was confirmed in the water samples referred. Hence, this study provides a novel SERS sensor of PVT/SiO2 @Ag NCs in the tile to detect and analyze environmentally ignored organic and inorganic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app