Add like
Add dislike
Add to saved papers

Chronic exercise increases excitability of lamina X neurons through enhancement of persistent inward currents and dendritic development in mice.

KEY POINTS: Chronic exercise alters adaptability of spinal motor system in rodents. Multiple mechanisms are responsible for the adaptation, including regulation of neuronal excitability and change in dendritic morphology. Spinal interneurons in lamina X are a cluster of heterogeneous neurons playing multifunctional roles in the spinal cord, especially in regulating locomotor activity. Chronic exercise in juvenile mice increased excitability of these interneurons and facilitated dendritic development. Mechanisms underlying these changes remain unknown. Lamina X neurons expressed persistent inward currents (PICs) composed of calcium (Ca-PIC) and sodium (Na-PIC) components. The exercise-increased excitability of lamina X neurons was mediated by enhancing Ca-PIC and Na-PIC components and facilitating dendritic length. Na-PIC contributed more to lowering of PIC onset and Ca-PIC to increase of PIC amplitude. This study unveiled novel morphological and ionic mechanisms underlying adaptation of lamina X neurons in rodents during chronic exercise.

ABSTRACT: Chronic exercise has been shown to enhance excitability of spinal interneurons in rodents. However, the mechanisms underlying this enhancement remain unclear. In this study we investigated adaptability of lamina X neurons with three-week treadmill exercise in mice of P21-P24. Whole-cell path-clamp recording was performed on the interneurons from slices of T12-L4. The experimental results included: (1) Treadmill exercise reduced rheobase by 7.4±2.2 pA (control: 11.3±6.1 pA, n = 12; exercise: 3.8±4.6 pA, n = 13; P = 0.002) and hyperpolarized voltage threshold by 7.1±1.5 mV (control: -36.6±4.6 mV, exercise: -43.7±2.7 mV; P = 0.001). (2) Exercise enhanced persistent inward currents (PICs) with increase of amplitude (control: 140.6±56.3 pA, n = 25; exercise: 225.9±62.5 pA, n = 17; P = 0.001) and hyperpolarization of onset (control: -50.3±3.6 mV, exercise: -56.5±5.5 mV; P = 0.001). (3) PICs consisted of dihydropyridine-sensitive calcium (Ca-PIC) and tetrodotoxin-sensitive sodium (Na-PIC) components. Exercise increased amplitude of both components but hyperpolarized onset of Na-PIC only. (4) Exercise reduced derecruitment current of repetitive firing evoked by current bi-ramp and prolonged firing in falling phase of the bi-ramp. The derecruitment reduction was eliminated by bath application of 3 μM riluzole or 25 μM nimodipine, suggesting that both Na-PIC and Ca-PIC contributed to the exercise-prolonged hysteresis of firing. (5) Exercise facilitated dendritic development with significant increase in dendritic length by 285.1±113 μm (control: 457.8±171.8 μm, n = 12; exercise: 742.9±357 μm, n = 14; P = 0.019). We concluded that three-week treadmill exercise increased excitability of lamina X interneurons through enhancement of PICs and increase of dendritic length. This study provided insight into cellular and channel mechanisms underlying adaptation of the spinal motor system in exercise. Abstract figure legend A. B6 mice were randomly divided into control group and exercise group. Control group mice remained sedentary in the cage; exercise group mice completed 60 min treadmill runs each day (6 days/week) for a period of 3 weeks. B. Whole-cell patch clamp recordings were made from lumbar lamina X neurons after three-weeks exercise. C. Exercise facilitated development of dendrites of lamina X neurons. D. Exercise enhanced persistent inward currents. E. Exercise increased excitability of lamina X neurons by hyperpolarizing voltage threshold for action potential generation. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app